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Abstract: The Mae Chaem River Basin experienced frequent wildfires, particularly during the dry season (January to April), with the 
majority occurring in reserved forest areas. These wildfires' impact is generally classified by severity, disrupted vegetation, soil 

properties, and hydrological regimes. This study aims to evaluate streamflow and sediment dynamics changes from 2014 to 2018 

using the Soil and Water Assessment Tool (SWAT), comparing pre-fire and post-fire scenarios. The results from the Difference 

Normalized Burn Ratio (dNBR) showed that low severity burn areas, comprising 20-67% of the total burned area, led to an 
escalation of peak discharge and sediment flow during the rainy season (May to September). The study found that the total runoff 

increased by 3% after the fire, which indicates a potential for more severe flooding. The average annual baseflow increased at the 

basin scale but fluctuated at the subbasin scale. The influence of wildfires on sediment transport exhibited a heightened magnitude 
compared to water yield. The sediment outflow from the watershed increased by approximately 15% based on the post-fire model. 

This increase was found to be related to precipitation intensity and the proportion of the burned area. Furthermore, sediment 

degradation and deposition were found to shift towards subbasins, with 25% of burned areas becoming more susceptible to 

combustion. 
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1. Introduction

Wildfires are unpredictable disasters that frequently 

occur in the northern region of Thailand. They have significant 
immediate and prolonged effects on the dynamic patterns of 

natural components such as land, water, soil, and weather [1-3]. 

These wildfires mainly occur on typical steep slopes. Despite 

the apparent evidence of forest fires in Thailand, statistical data 
on burned areas is rarely found in terms of spatial and temporal 

distribution. Conducting burn scar assessments is necessary to 

understand the effects of wildfires for the recovery plan. The 

severity of the burn area is related to the magnitude of the fire-
induced deterioration of vegetation. Several indices are 

commonly used in the archived satellite imageries in academic 

research to assess burn severity from wildfires, such as the 

Normalized Burn Index (NBR), the Difference Normalized Burn 
Ratio (dNBR), the Composite Burn Index (CBI), and the Burned 

Area Reflectance Classification (BARC) [4]. These indices are 

calculated using various spectral bands, vegetation indices, and 

topographic information. The extent and severity of burn 
damage caused by wildfires and the recovery of vegetation in 

the aftermath can be assessed using satellite imagery, which is 

considered a valuable tool. However, it must be acknowledged 

that various factors, such as the quality of input data, the spatial 
and temporal resolution of images, and the unique characteristics 

of the wildfire, can influence the accuracy of these assessments. 

Indices for assessing burn damage can be provided by various 

satellite systems, such as Landsat 5-8, MODIS, Sentinel-2, and 
Sentinel-1. Furthermore, the accuracy of the burn area indices 

obtained from these systems can also be affected by factors such 

as data quality, image resolution, and wildfire characteristics. In 

this study, the advantage of the NBR index is utilized to identify 

the burned scars, which can detect subtle differences in vegetation 

reflectance using satellite or aerial imagery from Landsat-7. 
Burn severity classification was calculated by the Difference 

Normalized Burn Ratio (dNBR) from satellite images, highlighting 

burned areas in forest zones. 

In addition, the stability of the hydrological system and 
land characteristics are immediately altered when a forest basin 

is disrupted by wildfire. As such, the impact of wildfires on 

hydrological changes and soil surface erosion is currently being 

widely studied by global societies in order to better understand 
the responsibilities associated with these phenomena [5]. The 

reduction in vegetation density leads to less infiltration and more 

overland flow, which can increase the amount of sediment 

transported to streams and rivers. The erosion can also cause 
changes to the channel morphology and sediment transport patterns 

[6-7]. With the loss of protective plant cover, the soil surface 

becomes exposed to the force of raindrops, which increases the 

risk of flash floods, particularly during the rainy season [8]. The 
peak discharges were possibly accelerated by a higher velocity 

of surface runoff [9-10]. The minimum flow of water that controls 

the health of streams and is also sustained by groundwater 

discharge is known as “baseflow or low-flow”. The impact of 
wildfires on baseflow low-flow that generally occurs during drought 

or low precipitation can vary, with some studies observing an 

increase in low-flow, while others have reported a decline 

depending on the severity of the fire and the proportion of burned 
areas [11]. Consequently, wildfires devastated the landform and 

shaped a new ecological system within the territorial catchment. 
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Wildfires can have a significant impact on soil erosion 

and the dynamics of sediment transport. High temperatures can 

cause thermal erosion and the removal of vegetation, which can 

increase surface runoff and fluvial erosion, leading to incremental 
sediment transport downstream. The deposited and eroded soil 

particles inevitably have an inherent connectivity with surface 

runoff and dynamic mobility along river channels [12]. This 

connectivity depends on the circulation of sediment particles 
through the channel tributaries. The higher rate of erosive soil has 

led to the degradation of land and channels. Considering wildfire 

impact, land use and land cover (LULC) have been permanently 

changed due to the removal of vegetation cover. Soil properties 
may change due to the heat from the wildfire, varying with the 

temperature, burning duration and severity of the wildfire [13]. 

Wildfires significantly reduce soil moisture, remove organic 

matter, and deteriorate soil structure and porosity [14]. Additionally, 
the heat from a wildfire can cause changes to the soil’s properties, 

making it less able to retain water and more susceptible to 

erosion. This can lead to increased sediment loads in streams and 
rivers, which can cause problems for downstream water users.  

Hydrological models that are used to estimate flow rates 

and sediment yields must be able to change these relevant 

parameters. Therefore, integrating the estimated combustion map 
into the hydrological system is a complex and spatially variable 

process in some particular catchments. Frequently used hydrological 

models for simulating streamflow after a wildfire include the 

Distributed Hydrology Soil Vegetation Model (DHSVM), the 
Precipitation Runoff Modeling System (PRMS), the Soil and Water 

Assessment Tool (SWAT), and models based on Hydrological 

Response Units (HRUs). The Soil and Water Assessment Tool 

(SWAT) is utilized to conduct a comprehensive analysis of the 
hydrological system and sediment dynamics within the context 

of fire conditions. Its capability to adjust parameters related to 

land use and land cover characteristics is a key feature of the 

tool to compare pre-fire and post-fire modeling according to 
burned severity levels [15]. 

The impacts of wildfires are pervasive on a global scale. 

A number of nations that have been beset by severe wildfires, 

such as the United States and Australia, have a vested interest in 
investigating the immediate and prolonged hydrological response 

on their respective ecosystems. However, in Thailand, there has 

been a paucity of research conducted on the hydrological and 

sedimentation responses after forest fires. The distributed 
hydrological model, known as the SWAT model, has been 

utilized in this study to evaluate daily discharge and sediment 

changes in the Mae Chaem River basin between pre-fire and 

post-fire conditions in the years 2014 to 2018. The objectives of 
this study are to: (1) assess variations in streamflow characteristics, 

specifically focusing on surface runoff and baseflow, and (2) 

examine the dynamics of sediment particles along the Mae Chaem 

River. The evaluation of streamflow and sediment dynamics 
have been analyzed under pre-fire and post-fire conditions.  

 

2. Methods and Materials 

 

2.1 Study area  

About 90% of the watershed is located in Mae Chaem, 

Chiang Mai. The southwestern basin covers the regions of Mae 

La Noi and Mae Hong Son. It has been designated as a class 1A 
area where the forested area has never been disturbed by human 

impact. The majority of the basin area is covered by evergreen 

and deciduous forests with diverse vegetation. It has been preserved 

as headwater by the government, and is officially recognized as 
the Mae Chaem National Reserved Forest. The drainage area of 

the basin encompasses 3,909 km2. The length of the river within 

its bounds is 207.2 km, and it is situated at an altitude of 650 

meters above the mean sea level [16]. In this study, the basin 

was divided into 12 subbasins. The area of each subbasin ranges 

from 56.05 to 500.38 km2, and the slope gradient ranges from 

1.24% to 53.88%. The Thai Meteorological Department reported 

that the climate in the basin was characterized by a yearly rainy 
season starting in May and ending in October, while the dry 

season spans from January to April [17]. The annual average 

accumulated rainfall is 970 mm, with the annual maximum and 

minimum temperatures being 24°C and 14°C, respectively [16]. 
The monitoring of the upper stream discharge was conducted at 

Ban Kong Kan, Mae Suk, Mae Chaem, where the designated 

inlet station (061302) was situated. The outlet station, labelled 

P.14A, is positioned in Ban Tha Kham, Hong Dong, Hod and is 
depicted in Figure 1. Additionally, the measurement of sediment 

concentration was obtained at inlet station 061302. 

 

 
Figure 1. The study region encompasses 12 subbasins, with 

boundaries crossing two provinces (Mae Hong Son and Chiang 

Mai). The station 061302 and P.14A were established as inlet and 
outlet hydrometric stations to measure water flow, respectively. 

 

2.2 Temporal Forest Fire 

Wildfires are a recurrent problem in northern Thailand, 

especially during the dry season, which exacerbates the region’s 

air quality crisis. To mitigate this situation, the Geo-Informatics 

and Space Technology Development Agency (GISTDA) utilizes 
satellite imagery to detect the locations of hotspots within 

Thailand. This study utilized the MODIS hotspot from FIRMs to 

delineate the study area, finding the highest cumulative historical 

hotspot between 2010 and 2021. Numerous reports indicate that 
hotspots were detected primarily in Chiang Mai, with a secondary 

occurrence in Mae Hong Son. The most critical region with the 

highest accumulation of hotspots over the past decade was found 

to be the Mae Chaem district, where a maximum of 4,817 points 
were recorded, with the largest concentration appearing in the 

Mae Suk subdistrict. The majority of hotspots are clustered in 

the reserved forest area because some tropical-forest root-crop 

farmers encroach on the forest area for agriculture, like corn 



Journal of Sustainable Energy & Environment 13 (2022) 85-98 

Copyright @ 2022 By Journal of Sustainable Energy and Environment 87 

fields. This method is called “slash-and-burn agriculture”. The 

average burning severity in the forest areas of the Mae Chaem 

River Basin was low. The vegetation restoration map in Figure 2 

was analyzed using the Normalized Difference Vegetation Index 
(NDVI) to measure the leafiness and health of the vegetation [18]. 

The temporal scenarios of post-fire conditions were evaluated 

one year after the fire occurrence (2014 to 2018). The post-fire 

models were prevented from vegetation regrowth and no post-
fire mitigation activities were conducted during the assessment. 

Figure 2. The example of Normalized difference vegetation index 

(NDVI) images on March and May. As the label description in the 
map, the red and green zones adversely represent the vegetation 

health. The circles cropped the mitigation from wildfire in the 

evergreen forest zone. 

2.3 Fire Burn Severity Assessment 

The Burn Indices method, integrated with the QGIS 

program, was utilized to estimate burn scars in the Mae Cheam 
River Basin. The burned maps, assessed in this study from 2014 

to 2018, are satellite products from Landsat 7 ETM+ surface 

reflectance with a resolution of 30 m. The assessments provide 

information on damage extent, affected areas, severity of burn, 
and affected vegetation. This helped identify high priority areas 

and aid recovery planning, monitor post-fire recovery, including 

vegetation regrowth, soil changes and new habitats, and identify 

areas of high ecological value that need special protection during 
recovery. The satellite imagery utilized in the present study was 

selected with minimal cloud masking, with the images chosen to 

present the pre-fire scenario being procured in January, and 

those selected to depict the post-fire situation being obtained 
during the latter part of April. 

2.3.1 Normalized Burn Ratio (NBR) 

The Normalized Burn Ratio (NBR) is a uniquely formulated 
index with the purpose of identifying burned areas. The NBR is 

expressed mathematically using a formula that correlates near-

infrared (NIR) and short-wave infrared (SWIR) bands, as depicted 

in Equation 1. The NBR values differentiate healthy vegetation 
from burned areas, with high NIR/low SWIR indicating healthy 

vegetation, and negative NBR indicating areas affected by fire and 

now bare soil [19]. A positive NBR suggests healthy vegetation, 

while a low NBR indicates recent burning and barrenness. 
Unburned areas have near-zero NBR values. 

NBR= 
(NIR-SWIR)

(NIR+SWIR)
 (1) 

In Lansat-7, NIR is Near Infrared or Band 4 and SWIR 

is Short Wave Infrared or Band 7. 

2.3.2 Difference Normalized Burn Ratio (dNBR) 

The severity of wildfire can differ based on the ecosystem 

and is commonly evaluated through the loss of vegetation. In the 

current study, the burn severity was determined by examining 

the NBR difference between pre-fire and post-fire conditions 
[20]. A higher value of dNBR indicates more severe damage; 

whereas, the area with a negative dNBR value shows enhanced 

regrowth after the fire. 

dNBR= NBRpre-fire-NBRpost-fire (2)

2.3.3 Burn Severity Threshold 

After NBR images have been calculated by Equation 1. 
The criteria to highlight a pixel that is expressed as a burning 

area must achieve two statistical requirements [21]: 

- Condition 1: If NBR of post-fire ≤ α

- Condition 2: If dNBR ≥β
The α is the threshold for NBR after burning and the β is

the threshold for the change of NBR. The value of α is obtained 

based on µ+2σ of the NBR post-fire image and the value of β is 
also calculated based on µ-2σ of the dNBR images. Thus, µ is 

the average value of NBR from total post-fire images, σ is the 

standard deviation of the dNBR value from total dNBR images. 

Based on the threshold analysis, the fire severity was classified 
into three levels as shown in Table 1, emphasized by the spatial 

response [21]. The observation of the burned area was available 

only in the protected forest area, which is under the supervision 

of the 16th Conservation Area Administration Office, National 
Park Division, Department of National Park, Wildlife and Plant 

Conservation [22]. The burn severity criterion is used similarly 

to calculate the combustion area for the total watershed area. 

The burned severity maps are illustrated in Figure 3. 

Table 1. Fire Severity Classification. 

Severity Level Condition 

Low µ+2σ ≤ dNBR ≤µ-1σ 

Moderate µ+2σ ≤ dNBR < µ 

High dNBR ≥ µ 

2.4 Conceptualization of SWAT Model 

The SWAT is a semi-distributed model developed to 

simulate rainfall-runoff, evapotranspiration and subsurface flow 

characteristics of a basin. The smallest parts of the models were 
generated from digital elevation (DEM), LULC, soil type and 

weather data [15, 23]. The multiple HRUs function is used to 

separate 5% of slope, soil, and LULC to optimize models and 

discard insignificant HRUs as show in Figure 4. After SWAT 
modelling was accomplished, the streamflow, and sediment 

transportation and dynamics were evaluated further. The calibration 

and validation of the pre-fire model must be accepted as an 

effective model based on R2 and NSE values. The vital input for 
the SWAT model, as depicted in Figure 5, has been presented. 

The SWAT model, when paired with burned area data, can simulate 

the effects of wildfire on hydrological processes and water resources. 

The estimation of changes in vegetation, biomass, and soil properties 
from wildfires is based on data including severity maps and updated 

land use and land cover information in the model. The post-fire 

conditions were assessed based on climatic-hydrological basin 

factors and channel properties. The parameters of channel properties 
remained at the same optimal value from pre-fire condition, which 

are the Muskingum calibrated coefficients (MSK_CO1, MSK_CO2, 

and MSK_X), the fraction of transmission losses (TRNSRCH), 

the Reach evaporation adjustment factor (EVRCH), and the 
Manning’s “n” value for main channel (CH_N2), and the effective 

NDVI Map 

March 2015 May 2015 

Enhanced 
Regrowth 

Evergreen Forest 
(FRSE) 

Evergreen Forest 
(FRSE) 
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hydraulic conductivity in main channel alluvium (CH_K2). 

However, the characteristics of LULC and optimal values of 

effective related parameters, such as the maximum canopy 

storage (CANMX), the initial SCS runoff curve number of 
moisture condition II (CN2), the soil evaporation compensation 

factor (ESCO), and the plant uptake compensation factor (EPCO) 

were adjusted for post-fire modelling during 2014-2018. The 

annual burning maps were combined to examine the streamflow 

and sediment dynamics within each year. The hierarchical 
procedure utilized in the study is shown in Figure 5. 

Figure 3. The map depicts the severity of fires from 2014 to 2018, as assessed by Landsat-7 Surface Reflectance and validated with 

data from the National Park Division's 16th Conservation Area Administration Office. 

Figure 4. Conservation Forest Area and the secondary data for Mae Chaem River Basin consist of Digital Elevation from Shuttle 

Radar Topography Mission (SRTM), LULC from Land Development Department (LDD) where the light green is deciduous forest 
and the dark green is evergreen forest, and Soil map from Food and Agriculture Organization (FAO). 

Figure 5. The overall flowchart illustrates the consequences and conceptual model in this study.

2014 2015 2016 2017 2018 
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2.4.1 Runoff Simulation 

Similar to other hydrological models, the SWAT model 

is mainly driven by the water balance equation (Equation 3) in 

hydrological processes. For SWAT analysis, two main approaches 
are available. Firstly, the land phase of the hydrological system, 

which includes the amount of water surface, sediment, nutrients, 

and pesticide loading, The routing phase, which can be defined 

by the channel properties from the headwater to the downstream, 
is the second division [23]. 

SWt=SW0+ ∑ (Rday-Q
surf

t
i=1 -Ea-wseep-Q

gw
)  (3) 

where: SWt is the final soil water content (mm), SWo is 

the initial soil water content (mm), t is the time (days), Rday is 

the amount of precipitation (mm), Qsurf is the amount of surface 

runoff (mm), Ea is the amount of evapotranspiration (mm), wseep 
is the amount of water entering the vadose from the soil profile 

(mm), and Qgw is the amount of return flow (mm). 

Surface runoff is the precipitation runoff that excesses 

over the ground surface when the soil is saturated beyond the 
rate of infiltration [24]. The runoff volume was calculated 

empirically using the general SCS curve number as shown in the 

equation below [25]. 

𝑄𝑠𝑢𝑟𝑓 =  
(𝑅𝑑𝑎𝑦−𝐼𝑎)

2

(𝑅𝑑𝑎𝑦−𝐼𝑎+𝑆)
 (4) 

where: Qsurf is the accumulated runoff or rainfall excess i 
(mm), Rday is the rainfall depth for the day (mm), Ia is the initial 

abstractions which includes surface storage, interception and 

infiltration prior to runoff (mm), and S is the retention parameter 

(mm). 

2.4.2 Sediment Simulation 

The SWAT utilizes the Universal Soil Loss Equation 

(USLE), developed by Wischmeier and Smith [23, 26], to evaluate 
the soil erosion in HRUs. The USLE equation enables to 

calculate the erosive energy of runoff based on rainfall intensity. 

The sediment yield was calculated based on Equation 5. 

sed=11.8 (Q
surf

q
peak

areahru) 0.56KUSLE× PUSLE×LSUSLE×CFRG (5)

where: sed is the sediment yield on given day (metric 

tons), Qsurf is the surface runoff volume (mm /ha), qpeak is the 

peak runoff rate (m3/s), areahru is the area of the HRU (ha), 
KUSLE is the soil erodibility factor, CUSLE is the USLE cover and 

management factor, PUSLE is the USLE support practice factor, 

LSUSLE is the USLE topographic factor, and CFRG is the coarse 

fragment factor. 
The simulation of sediment transport was regulated by 

the interplay of two processes, i.e., degradation and deposition. 

Degradation and deposition in the main channels were determined 

by combining stream power, channel slope, and peak channel 
velocity using Bagnold's equation [27]. 

𝑞 = 𝑐
𝜌

𝑔
√

𝑑

𝐷
𝑢∗

3  (6) 

where: q is the mass transport of sediment across a 
channel width, c is a dimensionless constant of order unity that 

depends on the sediment sorting, g is the gravitational acceleration 

(m2/s), d is the reference grain size for the sand (mm), and D is 

the nearly uniform grain size originally used in Bagnold's 
experiments (250 µm), and u* is the friction velocity proportion. 

The maximum concentration of sediment that float along 

the channel is calculated by: 

𝑐𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑥 = 𝑐𝑠𝑝 × 𝑣𝑐ℎ,𝑝𝑘
𝑠𝑝𝑒𝑥𝑝

 (7) 

where: 𝑐𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑥 is the maximum concentration of 

sediment (t/m3), 𝑐𝑠𝑝 is a coefficient defined by the user, 𝑣𝑐ℎ,𝑝𝑘  is

the peak channel velocity (m/s), and 𝑠𝑝𝑒𝑥𝑝 is an exponent factor 

defined by the user. If the maximum concentration in the stream 

is lower than the lower concentration at the inlet of each stream 

segment, the deposition is dominant. Otherwise, if the degradation 

process is governed by the segment, it is assumed that the 
maximum concentration in the channel is greater than the initial 

concentration. Equations 8 and 9 enable to estimate the maximum 

deposited and degraded sediment concentrations that can be 

produced in channels.  

seddep=(concsed,ch,i-concsed,mx)Vch  (8) 

where: seddep is the amount of sediment deposition (metric 
tons), concsed,ch,j is the initial sediment concentration (ton/m3), 

concsed,mx is the maximum of sediment concentration traveling 

along the channel (ton/m3), and Vch is the volume of water in 

channel (m3) 

seddeg=(concsed,ch,mx,-concsed,ch,i)Vch𝐾𝐶𝐻 𝐶𝐶𝐻  (9) 

where: seddeg is the amount of sediment re-entrained in 

the reach segment (metric tons), concsed,ch,mx is the maximum 
concentration traveling along the channel (ton/m3), Vch is  the 

volume of water in channel (m3), KCH is the channel erodibility 

factor (cm/h/Pa), and CCH is the channel cover factor. 

2.4 Model Calibration and Validation 

Having established all required data and parameters, the 

paired catchment approach was utilized to model the basin, as 

there were no precipitation gauges available. The energy balance 
of evaporation from open water surfaces was estimated using the 

Penman-Monteith method. Additionally, the Muskingum method 

was utilized in routing the channel flow to calculate surface runoff. 
The stream power was factored into soil erosion calculations to 

determine suspended sediment concentration and to predict the 

location of eroded or deposited river banks. The current study 

utilized daily time intervals to plot a hydrograph that displays 
water streamflow, as depicted in Figure 6, for the purpose of 

modeling predictions. The calibration phase started from 2014 to 

2015, followed by validation from 2016 to 2018. Before evaluating 

the model, a two-year warm-up period was introduced to account 
for soil moisture content.  

2.5 Post-Fire Parameter Adjustment 

In this study, the burned area focused only on the forest 
area. The effect of wildfires on streamflow, erosion rate, and 

sediment delivery was simulated in conjunction with the fire 

conditions described by Basso et al. (2019) [8]. The modified 

parameters were assessed under the following conditions: 

• The Curve Number (CN) is used to estimate runoff in

relation to cumulative precipitation, soil cover, land use, land 

cover, and post-fire area. It is an important parameter that can be 
adjusted to reflect changes in land cover and soil condition 

caused by wildfire consequences. The vegetation cover, which 

acts as a natural sponge, is destroyed, resulting in a higher CN 

value compared to the pre-wildfire condition. The CN value of 
forest areas in post-fire condition was increased by 5, 10, and 15 

for low, moderate and high severity, respectively. 

• The Soil Erodibility Factor (USLE_K) is a critical

parameter in the SWAT model, used to evaluate soil susceptibility 
to erosion caused by runoff and raindrop impact, based on soil 

properties. Its association with burned areas is crucial for 
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simulating the impact of wildfire on hydrological processes and 

water resources. Adjusting K values to reflect changes in land 

use and land cover caused by wildfire can enhance the accuracy 

of sediment yield predictions in the affected area. The K-factor 
was risen by 0.014, 0.015 and 0.016 Mg·ha/MJ·mm for low, 

moderate and high severity, respectively. 

• The crop vegetation factor (USLE_C) is used to reflect
the effect of cropping and management practices on soil loss. 

The destruction of vegetation cover and alterations in vegetation 

characteristics, such as a decrease in biomass and an increase in 

the exposed soil area, can lead to a decline in the USLE_C value. 
The values of low, moderate and high burn severity were 

subtracted by 0.01, 0.05 and 0.2, respectively. 

The change of variables must be specified in the database of 

the SWAT model based on the level of wildfire severity in order 
to reconstruct the HRUs characteristics. Updating the above 

values in the model can improve the accuracy of the water and 

sediment yield estimation in the burned area. 

3. Results and Discussion

3.1 Model Performance 

3.1.1 Pre-Fire Conditions 

The study focused on the discharge and sediment 

evaluation. The calibration and validation were performed with 

respect to the statistical indices as coefficient of determination 

(R2) and Nash-Sutcliffe efficiency (NSE). The reliability and accuracy 
of a hydrologic model can be determined based on these two key 

variables. Calibration took place between 2014 and 2015, and the 

simulated flow was validated between 2016 and 2018. Unfortunately, 

the observed discharge of station 061302 was unavailable in 2016 

and 2018.  From the pre-fire results, the NSE values for daily flow 

calibration of pre-fire conditions were 0.63 at station 061302 
and 0.57 at P.14A, respectively, as listed in Table 2. The calibrated 

period was satisfactory for daily analysis. The R2 values for the 

daily validation indicated acceptable results at both gauge stations. 

The NSE values of validated streamflow were equal to 0.72 at 
the inlet station, which was considered satisfactory model efficiency, 

however, the consistency of discharges at P.14A was significantly 

decreased to 0.48. The uncertainty evaluation is possibly linked 

to the fluctuations in water consumption due to temporal 
changes in land use and land cover types (e.g., rice fields, 

orchards, and other agricultural areas). The increase in cultivated 

areas can result in modifications of land use and land cover, 

which subsequently influence the amount of surface runoff, 
evapotranspiration, and water uptake by vegetation. Furthermore, 

irrigation systems can alter the flow dynamics within the region by 

redirecting water from natural watercourses or augmenting the 
water availability for crop growth. Inadequate weather data such 

as rainfall, temperature, humidity, wind, and solar radiation may 

lead to another erroneous climate assessment, resulting in an 

inefficient runoff evaluation in this study. A negative Nash-
Sutcliffe Efficiency (NSE) value, coupled with an R2 value fairly 

above zero, indicates that the model captures variation but 

struggles to reproduce the mean, suggesting some relevance with 

reality in terms of variation. Further studies could involve 
exploring modifications to the model parameters with a primary 

focus on preserving the mean in pre-fire and post-fire scenarios. 

Figure 6. The hydrographs were performed to evaluate the comparison between observed flow data and simulated flow due to pre-

fire and post-fire conditions. These comparisons were conducted over both the calibration and verification periods, covering (A.) 

Station P.14A from 2014 to 2018 and (B.) Station 061302 from 2014 to 2017. 
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Table 2. The model performance for daily flow and sediment transportation of pre-fire and post-fire conditions and comparison of 

dry period (January to April) flow rate performance of each year from 2014 to 2018. 

Year Parameters Station 
R2 NSE 

pre-fire post-fire pre-fire post-fire 

Calibration (Overall) 

2014-2015 

Q 
P.14A 0.60 - 0.57 - 

061302 0.63 - 0.63 - 

SED 061302 0.69 - 0.61 - 

Validation (Overall) 

2016-2018 

Q 
P.14A 0.52 - 0.48 - 

061302 0.82 - 0.72 - 

SED 061302 0.86 - 0.46 - 

Dry Season 2014 Q 
P.14A 0.00 0.22 -0.17 0.15 

061302 0.74 0.75 0.65 0.70 

Total-2014 SED 061302 0.67 0.67 0.58 0.52 

Dry Season 2015 Q 
P.14A 0.04 0.08 -0.93 -0.26

061302 0.21 0.29 0.11 0.26 

Total-2015 SED 061302 0.88 0.68 0.61 0.54 

Dry Season 2016 Q 
P.14A 0.00 0.01 -2.89 -0.63

061302 -- -- -- -- 

Total-2016 SED 061302 0.99 0.99 0.42 0.50 

Dry Season 2017 Q 
P.14A 0.45 0.53 0.40 0.45 

061302 0.37 0.48 -0.09 0.22 

Total-2017 SED 061302 0.67 0.78 0.58 0.72 

Dry Season 2018 Q 
P.14A 0.43 0.65 0.37 0.66 

061302 -- -- -- -- 

Total-2018 SED 061302 0.48 0.69 0.07 0.60 
-- No observed data available 

During the calibration period, the R2 and NSE values of 

sediment transportation were 0.69 and 0.61, respectively. The 
validated sediment flows provided reliable results with R2 = 

0.80. However, the efficiency of the model was diminished as 

indicated by an NSE value of 0.46, as shown in Table 1. 

Inconsistency in the model can be caused by the incompleteness 
of observed data over the study period. The observed sediment 

concentrations were available only at the date of sediment 

sampling, 67 times from 2014 to 2018. The observed sediment 

concentration was insufficient over the entire study period due 
to infrequent sample collection (1-2 times per month). The daily 

sediment flows at P.14A were primarily predicted throughout 

the study period. 

3.1.2 Post-Fire Conditions 

Vegetation recovery typically starts in May, particularly 

in the middle of the basin where low burn severity has permanently 

damaged the forest floor. The burned areas were also used to 
assess streamflow and sediment transport during the dry season 

from 2014 to 2018. Combining annual burned areas into 

hydrological models can be hindered by insufficient data, which 

can constrain the ability to predict sediment concentration during 
dry periods and prevent a detailed statistical study. Concluding 

based on a small set of data collected annually during the summer 

season would not be sufficient to reflect the findings of the study 

accurately. Consequently, an examination of the fluctuations in 
annual sediment transport was undertaken. 

The statistical indices of inlet and outlet were apparently 

improved over the pre-fire condition in summer 2017 and 2018, 

as shown in Figure 7. Results for summer 2017 revealed that R2 
and NSE statistical values of flow rate estimates at upstream 

stations (061302) increased from 0.37 to 0.48 and -0.09 to 0.22, 

respectively. Table 2 shows that the downstream station (P.14A) 

also showed increases, with R2 at 0.53 and NSE at 0.45. The 
improved results were observed in summer 2018, when adjustments 

in the burned areas led to increases in R2 and NSE indexes from 

0.43 to 0.65 and 0.37 to 0.66, respectively. However, the statistical 
values were not found to have changed significantly during the 

years 2014 to 2016, particularly the R2 and NSE results at station 

P.14A. There could be several reasons for the degradation of 

model performance. The NSE value of -0.26 in 2015 indicates 
the existence of a negative correlation between the simulated 

and observed data. A negative NSE value indicates poor model 

performance and that the observed data has less variation than 

the simulated data. A lack of sufficient observed burned areas 
from responsible agencies led to a poor interpretation of the 

burned area. The impacts of burned areas on each catchment can 

be complex based on aerial patterns and interactions between 

land use, weather conditions, vegetation diversity, and soil 
characteristics. These limitations are obstacles to accurately 

simulate certain modeling processes [8, 25]. 

Statistical values of simulated discharge were mostly 

found to be characterised by insignificant changes during the dry 
periods, with underestimated or overestimated evaluations of 

streamflow (inconsistent throughout the study period). From the 

middle of January to the end of March, the observed outflow 

was collected with the same value of 9.10 m3/s at P.14A (not 
only the observed data in 2015 but also errors repeatedly found 

throughout the study period). Inconsistencies between observed 

and simulated discharges can lead to inaccurate predictions of 

sediment transportation by not capturing true flow patterns and 
factors such as land use and weather. Sampling of suspended 

sediment concentrations is influenced by and subject to fluctuations 

based on daily water elevation and time at the hydrometric station 

[25], resulting in a peak of sediment flow in 2016. Otherwise, 
the R2 and NSE values from the calculations were found to lie 

within an acceptable range for sediment assessment, but the 

change in sediment pattern was found to be significant, particularly 

at the peak of the sediment flow, as shown in Figure 8. 
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Figure 7. The observed and simulated hydrographic curves compare annual dry season flow rates between pre- and post-fire conditions 

during calibration and validation periods where is (A) is the basin outlet (P.14A) and (B) is the basin inlet (Station 061302). 

Figure 8. Graph showing daily sediment levels plotted against simulated flow at Station 061302, encompassing data from (A.) the 

calibrated period, (B.) the validated period in 2016, and (C.) validated period in 2017 to 2018, and contrasting pre-fire and post-fire conditions. 
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3.2 Wildfire Effect on Streamflow 

Surface runoff and baseflow are the two primary 

components of streamflow [28]. The high flow, also known as 

surface runoff, is water that excesses from a tributary into the 
mainstream. The base flow, also known as low flow, is the 

portion of the streamflow that sustains between rainfall events 

by delaying subsurface flow at a shallow depth and linking with 

another stream [29]. Low flow is the flow of a stream during 
prolonged dry weather for purposes of permit discharge limits. 

As wildfires occur during the dry season, low-water flows 

played a relatively important role in this study. 

3.2.1 Surface Runoff Characteristics 

As expected, wildfire events have the capacity to change 

characteristics of surface runoff during calibration and validation. 

The occurrence of wildfires can also have a considerable effect 
on the temporal and quantitative characteristics of peak flow 

rates. The notable increase in peak flow was detected during the 

annual wet periods at sub-basin and basin scales, as shown in 
Figure 6. Peak flows in wildfire-affected areas are expected to 

increase by 2-25% compared to pre-fire conditions, according to 

hydrographs. With the removal of vegetation, precipitation is 

unable to be intercepted and retained by the canopy, resulting in 
an immediate runoff into the river, thereby amplifying the peak 

flow rates [29]. Additionally, it has been observed that an 

increase in peak flow rates during the annual precipitation 

period has an adverse effect on the performance of the runoff 
model under wildfire conditions. This may be attributed to the 

regeneration and restoration of forested regions following the 

annual rainfall period.  

According to the results of the accumulative surface 
runoff, the burned areas have rarely had a significant effect on 

the channel of annual accumulated surface runoff. The 

fluctuation trend of simulated runoff volume in the SWAT 

model is presented in Figure 9. The study found that there was a 
notable increase in annual cumulative runoff of approximately 

10% in 2014, 2017, and 2018 at basin scale. Conversely, a 

significant decrease of 20% was observed in 2015 and 2016 at 

basin scale. The flow rate at the sub-basin level revealed that the 
volume of water discharged into streams tends to be 

incrementally higher, with a slight increase of approximately 7% 

or 360 m3/s compared to pre-fire conditions. The total volume of 

runoff increases after wildfire disturbance, and this variability 

can be attributed to a variety of factors such as wildfire 

intensity, proportion of forest burned, climatic conditions, 

geology, and soil properties of specific location [11]. 
The runoff volume under wildfire scenarios may be 

attributed to the presence of low-intensity wildfires and annual 

precipitation patterns. Despite the high incidence of burning in 

2016, the minimum rainfall intensity had an insignificant impact 
on the flow estimates, as shown in Figure 10, both during the 

summer and throughout the year at stations 061302 and P.14A. 

The increase in water volume can be harmful because it can 

cause devastating flash floods in the downstream floodplain. 
The higher CN values were applied in the different forest types 

(evergreen and deciduous forests) based on severity levels. The 

results of the study indicate that in areas of low burn severity, 

the optimal CN values tend to be higher than pre-fire conditions 
as depicted, in Figure 11. Despite the great increase in CN 

values, total runoff at main stations slightly changed, indicating 

little impact from the wildfire on water flow. According to the 
2017 post-fire results in Figure 8, the runoff volume at P.14A, 

this was the most affected by the forest fire, increased by 

approximately 25%. Otherwise, the 2017 burned-scars had little 

effect on upstream runoff volume, which increased from 4,185 
to 5,253 m3/s, or about 8%. The highest CN value adjusted in 

2017 is also directly related to the maximum rainfall intensity 

inundating the basin, as illustrated in Figure 11. This suggests 

that runoff is a small contributor to rainfall in low-level severity 
areas. According to Figure 11, most CN values are on the rise 

and fall between 52 to 84. However, the data still exhibits 

significant variability and fluctuation from one year to the next. 

The inadequacy of the CN value makes optimization of burned 
areas in typical areas extremely difficult. Even in undisturbed 

forest conditions, determining correct curve numbers in forested 

watersheds is difficult because the diverse land covers were 

induced by varying severity, intensity, and fire reoccurrence 
[28]. The Curve Number (SCS-CN) should be applied in the 

field to improve the limitations of the hydrological model [29]. 

In addition, the initiation of regeneration for various tree species 

may occur at different times. The impact of wildfires on 
vegetation and soil may be mitigated through the process of tree 

regeneration. 

Figure 9. The bar graphs of annual runoff are plotted together with the scatter graphs of cumulative sediment transported and 

discharged from (A.) Station 061302 and (B.) Station 061302. P.14A, respectively. 
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Figure 10. Graph showing comparison between annual rainfall intensity and the proportion of burned areas in two watershed regions, 

the upstream basin (1st to 5th sub-basins) and the downstream basin (6th to 12th subbasins). 

The runoff volume under wildfire scenarios may be 

attributed to the presence of low-intensity wildfires and annual 

precipitation patterns. Despite the high incidence of burning in 
2016, the minimum rainfall intensity had an insignificant impact 

on the flow estimates, as shown in Figure 10, both during the 

summer and throughout the year at stations 061302 and P.14A. 

The increase in water volume can be harmful because it can 
cause devastating flash floods in the downstream floodplain. The 

higher CN values were applied in the different forest types 

(evergreen and deciduous forests) based on severity levels. The 

results of the study indicate that in areas of low burn severity, 
the optimal CN values tend to be higher than pre-fire conditions 

as depicted, in Figure 11. Despite the great increase in CN values, 

total runoff at main stations slightly changed, indicating little impact 

from the wildfire on water flow. According to the 2017 post-fire 
results in Figure 8, the runoff volume at P.14A, this was the most 

affected by the forest fire, increased by approximately 25%. 

Otherwise, the 2017 burned-scars had little effect on upstream runoff 

volume, which increased from 4,185 to 5,253 m3/s, or about 8%. 
The highest CN value adjusted in 2017 is also directly related to 

the maximum rainfall intensity inundating the basin, as illustrated 

in Figure 11. This suggests that runoff is a small contributor to 

rainfall in low-level severity areas. According to Figure 11, most 
CN values are on the rise and fall between 52 to 84. However, 

the data still exhibits significant variability and fluctuation from 

one year to the next. The inadequacy of the CN value makes 

optimization of burned areas in typical areas extremely difficult. 
Even in undisturbed forest conditions, determining correct curve 

numbers in forested watersheds is difficult because the diverse 

land covers were induced by varying severity, intensity, and fire 

reoccurrence [28]. The Curve Number (SCS-CN) should be applied 
in the field to improve the limitations of the hydrological model [29]. 

In addition, the initiation of regeneration for various tree species 

may occur at different times. The impact of wildfires on vegetation 

and soil may be mitigated through the process of tree regeneration. 

3.2.2 Baseflow Characteristics 

In a watershed, the movement of water is characterized 

by streamflow, surface flow, and baseflow, which are all interrelated.  
Baseflow denotes the water that originates from subsurface sources, 

such as groundwater, and also contributes to streamflow. Wildfires 

have the capacity to modify the fraction of precipitation that 

percolates into the subsurface. Wildfires affect hydrology by 
altering water availability and timing, as well as reducing low-

flow conditions. Flow duration curve analysis can reveal changes 

in flow magnitude before and after a wildfire.  

In the present study, baseflow is defined as that flow that 
is exceeded for greater than 70% of the time. An analysis of the 

pre-fire hydrological conditions was conducted from 2014 to 

2018, and the minimum low-flow conditions were determined to 

be 2.05 m3/s and 2.16 m3/s at stations P.14A and 061302, 

respectively. Based on Figures 12-13, the minimum flow rate on 
the y-axis of the post-fire model was found to be 2.04 m3/s 

upstream and 2.18 m3/s downstream, indicating that these 

stations were minimally affected by forest burning, respectively. 

The average baseflow at the watershed level remained unchanged, 
with a slight increase from 3.85 to 3.96 m3/s. However, the 

average low-flow of the post-fire condition decreased by about 

0.18 m3/s at station 061302. Inconsistent results across years 

may impact the understanding of wildfire interactions. Many 
previous studies have interestingly found that the wildfire 

decreased baseflow recession rates and were a significant factor 

in controlling groundwater storage [30-32]. However, several 

studies have revealed that the fundamental current of baseflow 
can increase from the pre-fire condition [33]. 

Figure 11.  Graph showing the average optimal CN value for 

forest areas under different model conditions, which includes 

pre-fire and post-fire conditions, calculated from 2014 to 2018. 

The magnitude of average low-flow trends to be lower 

than the fire event at the subbasin scale, according to post-fire 

modeling calculations. In the post-fire of Figure 12, there is a 

slight decrease in the average low-flow, with a decrease of about 
8% in 2014, 2016, and 2018. Additionally, the average decrease in 

the post-fire period is 0.39 m3/s compared to the pre-fire period. 

The decrease in average low-flow in the post-fire period may be 
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caused by the damage to the ecosystem from the fire event, leading 

to a reduction in available water resources and a decrease in the 

average low-flow. The burning of vegetation and alteration of soil 

structure during a wildfire can impede the infiltration of 
precipitation, resulting in diminished availability of water to 

recharge aquifers and sustain baseflow [29-31]. In contrast, the 

average low-flow for post-fire modeling at P.14A has increased 

slightly, particularly from 2016 to 2018, with an approximate 
increase of 0.26 m3/s or around 5.5% on average, as shown in 

Figure 13. Wildfires may, in some circumstances, augment low-

flow in a stream or river through the enhancement of water 

infiltration and recharge of subterranean aquifers, as a result of 
an alteration in soil permeability. [34-35]. As the majority of the 

burned area was classified as low severity, the elimination of 

invasive plant species through wildfire can foster the resurgence 

of native vegetation, thereby enhancing water infiltration and 
retention and consequently augmenting water availability for 

baseflow. To further investigate the correlation between baseflow 

and surface runoff, the evapotranspiration rate, infiltration, water 

recharge, groundwater storage, and soil properties should be 

considered to eliminate the uncertainty results [35].   

3.3 Wildfire Effect on Sediment 
Fires that combusted leaf litter resulted in an augmentation 

of runoff volume, which had the potential to exacerbate soil 

erosion within the burned watershed. The soil safeguarding, which 

was contingent upon the level of burn severity and strongly correlated 
with sediment transportation, has been established as a tendentious 

relationship between hydrological and sedimentary processes 

[35]. The spatial scale of the wildfire is particularly important when 

considering its impact on sediment dynamics in the basin. Despite 
the importance of evaluating the effects of wildfires on sediment 

transportation and dynamics within a basin, current sediment 

monitoring methods are typically limited to upstream stations, 

thereby lacking data on downstream sediment transport. This 
study sought to fill the gap by providing and comparing quantitative 

information related to the movement and redistribution of 

sediment in this river with regard to the effect of wildfire. 

Figure 12. Graph of flow duration curves showing the probability of baseflow occurrence that exceed 70 percent at Station 061302 

and comparing observed flow with pre-fire and post-fire conditions. 

Figure 13.  Graph of flow duration curves showing the probability of baseflow occurrence that exceed 70 percent at Station P.14A 

and comparing observed flow with pre-fire and post-fire conditions. 
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3.3.1 Sediment Transportation 

Low burn severity fires mostly burn the surface vegetation 

and leave the soil gently damaged, leading to less erosion and 

sediment transport and faster recovery [36]. The study revealed 
that a quantity of sediment, approximately 748,450 tons, was 

transported from station 061302 in pre-fire modelling over the 

course of the study period. Initially, the upper basin's average 

sediment yield was computed to be 73.39 t/km2/y. However, the 
post-fire condition showed that the average sediment yield had 

significantly risen by 32%, resulting in a new average of 97.33 

t/km2/y.  

In Figure 9A, the greatest increase in sediment flow is 
observed in 2015, with a difference of 76,959 tons between post-

fire and pre-fire flow, and the second-largest increase is seen in 

2017, where the post-fire sediment flow surpasses the pre-fire 

flow by approximately 115,510 tons. The study showed a strong 
correlation between changes in flow rates and sediment 

concentrations following a wildfire, with the peak of sediment 

flow exceeding pre-fire levels, particularly at station 061302 
during the 2015 and 2017 rainy seasons, as show in Figure 8. 

The study revealed that 397,164 tons of suspended sediment, or 

43.00 t/km2/y, were flowing out of the basin at P.14A due to 

gravitational forces. Additionally, wildfires have had a significant 
impact on downstream stations, resulting in an increase in 

sediment transport rates of approximately 15%, or 49.48 t/km2/y. 

Furthermore, it can be inferred that the areas downstream 

(subbasins 6-12) have experienced a substantial loss in sediment 
yield, potentially indicative of downstream sediment deposition 

over the period 2014-2018. In most years, the amount of post-

fire sediment transportation was higher than the pre-fire amount, 

ranging from 13.40% to 30.70%. In Figure 9B, a notable increase 
in sediment transport is observed in 2017, where the post-fire 

sediment flow surpasses the pre-fire sediment flow by 39,904 

tons or 21.04 t/km2/y. The second most significant increase is 

seen in 2018, where the post-fire sediment flow exceeded the 
pre-fire sediment flow by 25,893 tons or 14.00 t/km2/y. In 2017, 

the area of forest that burned the least in the upstream and 

downstream regions was approximately 323.79 km² and 540.60 

km², respectively, as displayed in Figure 10A- 10B. Although, 
there were fewer burned areas in 2017, it resulted in a greater 

sediment yield compared to other years, which was attributed to 

the higher intensity of rainfall [36]. 

Otherwise, the largest burned area was assessed in 2016, 
as illustrated in Figure 10B, but the decrease in annual rainfall 

and surface runoff also had an adverse impact on sludge 

reduction at P.14A. Sediment transportation decreased by 20.7% 

compared to the pre-fire condition as shown in Figure 9B. The 
removal of vegetation by wildfires, which serves as a stabilizing 

agent for soil, and the alteration of the landscape, resulting in an 

increased susceptibility to erosion, can exacerbate the erosion 

process. Additionally, a decrease in precipitation can also exacerbate 

erosion by hindering the movement of sediment and soil. The 
estimation of sediment transportation underneath wildfire events 

is a complex phenomenon that involves many factors, including 

land characteristics, precipitation and surface runoff, and the 

level of burn severity. The inconsistent results that are often 
obtained in studies may be attributed to variations in these 

factors, particularly in a heterogeneous environment, where the 

adapted threshold for classifying the level of burn severity may 

not be entirely relevant to the actual conditions [4]. 

3.3.2 Sediment Dynamic 

The movement of suspended sediment is primarily 

controlled by the flow rate and areal characteristics of the sediment 
supply. Wildfires can have an immediate impact on these factors, 

altering the movement of sediment particles and the location of 

erosion and deposition. The Soil and Water Assessment Tool 
(SWAT) uses a stream power equation to simulate simultaneous 

sediment degradation and deposition, but this is limited to the 

mainstream channel only [23]. It means that the patterns of 

sediment dynamics in tributary streams in subbasins 1, 4, 6 and 9 
could not be assessed due to the lower stream order of the 

hierarchical system in the river. 

From Figure 14, the pre-fire modeling predictions indicate 

that a significant amount of soil particles, around 559,000 tons, 
were eroded within the river system from 2014 to 2018. 

Conversely, the capacity for sediment retention within the stream 

channels was estimated to be approximately 1.9 million tons 

during the same period. The pre-fire modeling predictions 
indicated that Channel 3 had the highest amount of soil particles 

subject to erosion, accounting for 43.75% of total sediment 

degradation observed from 2014 to 2018. The decrease in sediment 

loads observed in Figure 12 is due to sediment deposition at 
segment no. 10, where a significant amount of sediment (537,5480 

tons) was discovered to have settled. The downstream deposition 

of sediment can be attributed to the gradual decrease in water 

velocity as it transits from the headwater to the downstream, 
thereby allowing for the sediment particles to be deposited on 

the riverbed [37]. Within a 5-year period, approaches that include 

pre- and post-fire data collection are needed to understand the 

impact of wildfire on sediment dynamics. One-year changes may 
partially capture the effects of changes in vegetation, land use, 

and other factors on sediment deposition and erosion. Therefore, 

assessing sediment in both pre- and post-fire scenarios is crucial 

for a comprehensive understanding as shown in Figure 14.   

Figure 14.  The Bar graph displaying the sediment dynamics in the main channels of the Mae Chaem River, categorized into 
deposition and degradation processes, from 2014 to 2018. 
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When compared to pre-fire conditions, the sediment 

dynamic effects of wildfire disaster reveal a significant increase 

in sediment degradation, approximately 1.75-fold, as well as a 

significant increase in sediment deposition, approximately 3-
fold. The burned area ratio of 25% or more has a tendency to 

impact sediment dynamics within the Mae Chaem Basin. The 

bar graph in Figure 14 shows that the channels in subbasin no. 5 

have a higher rate of critical erosion after the fire, due to a 
higher proportion of burned area (32.37%) compared to the 

proportion in subbasin no. 3 (24.40%). During 2014-2018, with 

1840 mm, the 3rd subbasin of the Mae Chaem Basin had the 

highest annual precipitation. Intense precipitation can exacerbate 
soil and sediment erosion, which can be conveyed to downstream 

areas, resulting in heightened sediment accretion in channels 

and aquatic environments, thereby potentially diminishing water 

quality, creating flood hazards, and causing infrastructure damage. 
There was a significant increase in the total deposited sediment in 

the post-fire conditions for all channels, and a higher proportion 

of burned area was associated with a higher increase in deposited 
sediment. Subbasin 10 continues evidently to be the primary 

location for sediment deposition, as displayed in Figure 13, 

similar to pre-fire conditions. Despite this similarity, there has been 

a marked increase in sediment deposition, totaling 1.16 million 
tons, due to the highest proportion of burned area at 56.77%, in 

Figure 15, which covers half of the subbasin’s drainage area. 

This is possibly due to the faster velocity and time compensation 

of runoff over the same cross-sectional area [13]. The 
shallowness of the sub-stream can exacerbate the potential for 

flooding in adjacent regions. The rainfall threshold and 

proportion of burned area are related to the effective hydrological 

and sedimentological responses and should be determined 
further in future work, using more accurate region-specific data. 

The adjustment of rainfall frequency and intensity after wildfire 

occurrence should be accounted for in future investigations.   

Figure 15. Graph presenting the average of the percentage of 

burned area and drainage area per sub-basin, calculated from 

2014 to 2018. The burned area was evaluated using a dNBR 
analysis. 

4. Conclusions 

The present study aimed at quantifying the wildfire-

induced perturbations on hydrological and sedimentological 

regimes through the implementation of distributed modeling as 

the SWAT model. This study also examined variations in the 
characteristics of surface runoff, subsurface flow, sediment 

transport, and sediment dynamics within the Mae Chaem River 

basin from 2014 to 2018, compared between pre-fire and post-

fire conditions. The analysis of the model's performance 
demonstrated conclusively that the Soil and Water Assessment 

Tool (SWAT) model is an efficacious hydrological simulation 

program for assessing the impact of LULC, soil, and vegetation 

changes. The analysis of the Difference Normalized Burn Ratio 

(dNBR) indicated that the dominance of the areas affected by 
the wildfire indicated a low burn severity, approximately 90% 

of the total burned area, primarily resulting in the devastation of 

the vegetation cover and physical properties of the land.  

The result showed that the increase in burned land 
between 2014 and 2018 resulted in a significant acceleration of 

peak flowrate during wet periods, leading to a substantial 

enhancement in the annual surface runoff. The study revealed 

that there was a predominance of annual cumulative runoff at 
around 10% at the basin scale (P.14A). The consistency of the 

results was also observed at the station 061302, indicating that 

the amount of water discharged into streams displayed a slight 

increase of approximately 7%. A slight decrease in the average 
baseflow was observed in the upstream basin, with a decline of 

roughly 0.39 m3/s. On the other hand, post-fire modeling at 

P.14A revealed a slight increase in the average low-flow rate, 
registering a 0.26 m3/s increase. These fluctuations should be 

subjected to further evaluation in order to fully comprehend 

their effects, and an analysis incorporating factors such as infiltration 

and evapotranspiration rates should also be conducted. 
Changes in sediment transport and sediment dynamics 

are characterized by a complicated relationship between 

precipitation intensity, runoff, and the interactions between 

burned areas. The wildfire events resulted in a significant 
enhancement of annual sediment transport by 33% (24 t/km2/y) 

and 15% (6.5 t/km2/y) at stations 061302 and P.14A, 

respectively. Furthermore, wildfires caused an exacerbation of 

the sediment transport peaks during the rainy season, which 
have similar effects as runoff peaks. The proportion of low-

severity combustion exceeding 25% has a critical impact on the 

sediment dynamics within the basin. Wildfire caused a 

significant 1.75-fold rise in sediment degradation and a 
substantial 3-fold increase in sediment deposition. 
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